Inverse dispersion engineering in silicon waveguides
نویسندگان
چکیده
We present a numerical tool that searches an optimal cross-section geometry of silicon-on-insulator waveguides given a target dispersion profile. The approach is a gradient-based multidimensional method whose efficiency resides on the simultaneous calculation of the propagation constant derivatives with respect to all geometrical parameters of the structure by using the waveguide mode distribution. The algorithm is compatible with regular mode solvers. As an illustrative example, using a silicon slot hybrid waveguide with 4 independent degrees of freedom, our approach finds ultra-flattened (either normal or anomalous) dispersion over 350 nm bandwidth in less than 10 iterations.
منابع مشابه
Optical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملElectrical control of parametric processes in silicon waveguides.
We demonstrate electrical tuning of phase mismatch in silicon wavelength converters. Active control of birefringence induced by a thin-film piezoelectric transducer integrated on top of the waveguides is used for dispersion engineering. The technology provides a solution for compensating the phase mismatch caused by fabrication errors in integrated waveguides. It also offers a mean to dynamical...
متن کاملTailored Chromatic Dispersion in Silicon-on-Insulator Slot Waveguides
We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Two different dispersion regimes are identified. Keywordsintegrated optics; silicon photonics; dispersion.
متن کاملNonlinearities in porous silicon optical waveguides at 1550 nm.
We report an experimental investigation of the nonlinear optical properties of nanoporous silicon optical waveguides measured at 1550 nm. The nonlinear properties including two-photon absorption, self-phase modulation, free-carrier absorption and free-carrier plasma dispersion are characterized and compared with similar measurements conducted on a conventional silicon-on-insulator ridge wavegui...
متن کاملExperimental GVD engineering in slow light slot photonic crystal waveguides
The use in silicon photonics of the new optical materials developed in soft matter science (e.g. polymers, liquids) is delicate because their low refractive index weakens the confinement of light and prevents an efficient control of the dispersion properties through the geometry. We experimentally demonstrate that such materials can be incorporated in 700 μm long slot photonic crystal waveguide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014